检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于生成对抗网络的控辩焦点识别
下载:
28
浏览:
330
杨亮1 周逢清1 张琍2 毛国庆3 易斌1 林鸿飞1
《中文研究》
2020年1期
摘要:
近年来,随着深度学习技术的不断发展,自然语言处理作为人工智能的一个重要分支,在许多垂直领域有了广泛的应用,如司法、教育、医疗等。在司法领域的庭审过程中,控辩双方往往围绕案件的争议焦点持有不同观点,而该焦点也是影响案件最终判决和量刑的关键所在,该文旨在识别并生成电子卷宗中的控辩焦点。由于控辩焦点的构成大多依赖对案情文本的分析概括,受此启发该文尝试将文本摘要的思想迁移到该任务中,结合生成对抗网络构建控辩焦点的生成模型,进而获得案件的控辩焦点。在裁判文书网的真实司法数据的基础上,开展了相关的实验。实验结果显示,所提出的模型对控辩焦点的识别精度有了一定幅度的提升。因此,该文对检察机关办案人员的庭前预案及案件审理有着一定的辅助作用与应用价值。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享