请选择 目标期刊

改进的k-means聚类算法在公交IC卡数据分析中的应用研究 下载:68 浏览:476

杨健兵 《软件工程研究》 2019年11期

摘要:
针对传统k-means算法中初始聚类中心随机确定的问题,提出k-means改进算法。首先,定义变量权值,权值的大小等于样本密度乘以簇间距离除以簇内样本平均距离,通过最大权值来确定聚类中心,克服了随机确定聚类中心的不稳定性。然后在Hadoop平台上用Map-Reduce框架下实现算法的并行化。最后以南通公交IC刷卡记录为例,通过改进的k-means聚类算法进行IC卡刷卡记录的分析。实验表明,在Hadoop平台下改进k-means算法运行稳定、可靠,具有很好的聚类效果。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享