请选择 目标期刊

基于层次模型和注意力机制的文本分类算法 下载:72 浏览:321

武高博1 王黎明1 柴玉梅1 刘箴2 《中文研究》 2020年6期

摘要:
文本分类一直是自然语言处理任务的研究重点与热点,且被广泛应用到诸多实践领域。首先,该文针对文本分类过程中缺乏层次结构特征的问题,对NMF-SVM分类方法进行优化,利用优化后的分类标签构建树形层次模型,从特征树中提取层次特征;其次,针对关键词与非关键词对分类结果影响程度不同的问题,提出SEAN注意力机制,通过对时间、地点、人物和事件四要素的提取,得到不同词之间的注意力;最后,针对句子间亲和度不同的问题,考虑不同句子的四要素词和语义层面的影响提出句间亲和度计算模型。该文算法适用于四要素突出的数据集,如新闻、小说、阅读理解、微博,在新闻类数据集上与同类别的深度学习文本分类模型以及包含注意力机制的混合模型进行了对比,实验结果表明,该算法在分类效果上具有一定优势。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享