检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
非线性Hammerstein模型的生物优化辨识
下载:
53
浏览:
441
李俊晖 石守东 林卫星 汪睿琪
《天线研究》
2018年1期
摘要:
在现代工业生产领域中,非线性系统的辨识一直是研究人员研究的重点对象。针对输入非线性Hammerstein模型,本文提出了运用生物优化算法中的蚁群算法(ACO)、杂交粒子群算法(HPSO)对非线性系统进行辨识。讨论了ACO、HPSO的基本算法与参数初值的设置与选择方法。通过研究各算法的辨识效果、精度、以及鲁棒性,说明:杂交粒子群、蚁群算法都是参数设置少、编程易实现,辨识精度高,鲁棒性较好的一类算法,在解决实际问题时,有很高的利用价值。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享