请选择 目标期刊

融合SKNet与YOLOv5深度学习的养殖鱼群检测 下载:54 浏览:322

赵梦1,2 于红1,2 李海清1,2 胥婧雯1,2 程思奇1,2 谷立帅1,2 张鹏1,2 韦思学1,2 郑国伟1,2 《中国水产学报》 2022年3期

摘要:
为解决真实养殖环境下,水下成像模糊、失真等导致鱼群检测准确率低的问题,提出一种融合视觉注意力机制SKNet (selective kernel networks)与YOLOv5(you only look once)的养殖鱼群检测方法(SK-YOLOv5模型),该方法首先采用UNet(convolutional networks for biomedical image segmentation)对图像进行预处理,得到清晰的鱼群图像,然后将SKNet融合到YOLOv5的Backbone端构成关注像素级信息的特征提取网络,加强对模糊鱼体的识别能力,并在水下模糊鱼群图像数据集上进行了消融试验和模型对比试验,以验证SK-YOLOv5的有效性。结果表明:在鱼群检测任务上,SK-YOLOv5的识别精确率和召回率分别达到了98.86%和96.64%,检测效果比YOLOv5分别提升了2.14%和2.29%,与目前检测准确率较高的水下目标检测模型XFishHmMp和FERNet相比,SK-YOLOv5取得了较好的检测效果,与XFishHmMp模型相比,识别精确率和召回率分别提升了5.39%和5.66%,与FERNet模型相比,识别精确率和召回率分别提升了3.59%和3.77%,实现了真实养殖环境下鱼群的准确检测。研究表明,融合SKNet与YOLOv5的养殖鱼群检测方法,有效地解决了水下模糊图像鱼群检测准确率低的问题,提升了养殖鱼群检测和识别的整体效果。

光伏发电设备安装质量控制与安全管理 下载:56 浏览:1060

李海清 《中国设备》 2024年6期

摘要:
安装光伏发电设备不仅是技术工艺中的一个环节,还代表了一个项目能否达到预期目标的决定性因素。随着全球能源向更干净、可持续的方向转变,光伏技术作为重要的可再生能源解决方案之一,在促进能源结构转型和应对气候变化方面扮演着关键角色。因此,光伏设备的安装过程及其质量控制不仅关系到单个光伏项目的运营效益,更对整个可再生能源领域的健康发展具有深远影响。综上,本文将探讨光伏发电设备安装质量控制与安全管理措施。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享