检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于深度学习的电网短期负荷预测方法研究
下载:
82
浏览:
499
吴润泽1
包正睿1
宋雪莹1
邓伟2
《电力研究》
2018年5期
摘要:
深度模型通过学习一种深层非线性网络结构以实现复杂函数逼近,具有很强的自适应感知能力。本文为了提高电力负荷预测精度,提出一种基于栈式自编码神经网络的深度学习预测方法。该方法结合自编码器和逻辑回归分类器构建一个多输入单输出预测模型,并将重构后的历史负荷、气象信息等数据输入到预测模型中,用栈式自编码器逐层学习并提取深层特征,最后在网络顶层连接逻辑回归模型进行短期负荷预测。实例分析表明,所提预测模型能够有效刻画日负荷变化规律,泛化能力较强,其预测精度达到96.2%,比支持向量回归和模糊神经网络两种浅层学习模型更高。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享