检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于多特征融合的SAR图像舰船自学习检测算法
下载:
83
浏览:
451
楚博
策文
义红
陈金勇
《无线电研究》
2018年8期
摘要:
传统的舰船检测方法主要包括恒虚警检测(CFAR)和机器学习类算法,其中CFAR舰船检测容易受噪声影响,检测结果过分依赖参数与海杂波模型的选择,准确率低并且鲁棒性较差。简单的阈值判定方法由于特征单一,对舰船目标描述性较差,机器学习算法需要对已有数据库中舰船数据进行训练,准确度较高但检测周期过长,更新较慢,无法满足现代战争的快速反应、实时更新的需求。提出一种基于多特征融合的自学习算法,对感兴趣目标提取形态学、灰度和轮廓等多种特征,通过对多特征阈值判定方法对相似舰船目标进行检测,可实现对战场突发状况与未知目标快速反应能力的同时保证较高的检测准确率。实验结果表明,提出的检测算法相比传统方法的查全率提高了10%,虚警率降低了4%,并且实现了单幅运行时间的大幅度缩减。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享