检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
引入词性标记的基于语境相似度的词义消歧
下载:
27
浏览:
265
孟禹光 周俏丽 张桂平 蔡东风
《中文研究》
2018年4期
摘要:
目前的语境向量模型在对语义空间建模的时候,没有考虑到同一个词的不同词性具有不同的含义,将它们看作同一个点进行建模,导致得到的语境向量质量不高,使用这种语境向量计算语境相似度效果不好。针对该类问题,提出了一种加入词性特征的语境向量模型,加入词性后,可以将原本用语义空间中一个点表示的几个语义区分出来,得到质量更好的语境向量和语境相似度,进而得到更好的消歧效果。实验结果表明,这种建模方式可以有效区分不同词性的语义,在2004年的Senseval-3测试集上进行测试,准确率达到了75.3%,并在SemEval-13和SemEval-15公开测试集上进行了测试,消歧效果相比未引入词性特征的模型均得到了提升。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享