检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于卷积网络的遥感图像建筑物提取技术研究
下载:
87
浏览:
485
付发
未建英
张丽娜
《软件工程研究》
2018年9期
摘要:
Mask RCNN是当前最高水平的实例分割算法,本文将该算法应用到高分辨率遥感图像建筑物提取中,提出了一种高效、准确的高分辨率遥感图像建筑物提取方法。首先,利用Tensorflow和Keras深度学习框架搭建Mask RCNN网络模型;然后,通过有监督学习方式在IAILD数据集上进行模型学习。利用训练出的模型对测试集进行建筑物提取实验,通过与基于KNN和SVM等建筑物提取方法对比可以看出,本文方法可以更加完整的、准确的提取出建筑物。采用m AP评价指标对实验结果进行定量评价,本文算法的查全率和查准率均大于对比算法,且多次实验中本文算法的m AP均在81%以上,验证了基于卷积网络的高分辨率遥感图像建筑物提取的有效性和准确性。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享