检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于机械学习理论的海冰风险短期预报研究
下载:
47
浏览:
270
于嵩松1 李思茵1 张大勇1 王刚1 岳前进1,2 李刚2
《海洋研究》
2021年4期
摘要:
海冰管理是抵御寒区海洋资源开发海冰威胁的有效手段,海冰风险的准确、快速预测是海冰管理系统的关键组成部分。文中面向海冰管理中的冰情短时预测需求,明确了基于现场监测的海冰风险预测模式,开展了应用机械学习理论的海冰风险短时预测方法研究,并以渤海辽东湾海冰管理为例,讨论了神经网络与小波分解等非线性预测方法在冰情短时预测中的适用性。结果表明,时间序列小波神经网络在短时(6 h)冰厚预测中的预测精度与Elman神经网络相仿,而在24~48 h预测中的精度偏差较大;Elman神经网络在6 h、24 h与48 h的冰厚预测中均能保持较好的预测精度,在冰流速与来冰方向预测中,模型预测精度达到80%左右。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享