检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
一种基于变分自编码器的高光谱图像分类方法
下载:
84
浏览:
489
徐朋磊 薛朝辉 车子杰
《测绘科学与技术》
2020年3期
摘要:
深度学习可以有效表达影像的深层特征,在遥感图像处理特别是在分类方面取得了良好的效果。提出了一种基于变分自编码网络的高光谱遥感影像深度学习分类方法,该方法利用变分自编码器进行无监督训练,用分类层替换解码层,输入训练样本进行分类网络的微调,最后在分类器预测的类别概率图基础上使用条件迭代模型求解马尔可夫随机场,对分类结果进行优化。在两幅通用高光谱数据集上进行分类实验,结果表明基于变分自编码器的高光谱遥感影像分类方法取得了优于其它方法的分类效果。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享