检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于伪成对标签的深度无监督哈希学习
下载:
62
浏览:
354
林计文
刘华文
《人工智能研究》
2020年6期
摘要:
无监督的深度哈希学习方法由于缺少相似性监督信息,难以获取高质量的哈希编码.因此,文中提出端到端的基于伪成对标签的深度无监督哈希学习模型.首先对由预训练的深度卷积神经网络得到的图像特征进行统计分析,用于构造数据的语义相似性标签.再进行基于成对标签的有监督哈希学习.在两个常用的图像数据集CIFAR-10、NUS-WIDE上的实验表明,经文中方法得到的哈希编码在图像检索上的性能较优.
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享