检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于BiDAF多文档重排序的阅读理解模型
下载:
28
浏览:
444
杨志明1,2,3
时迎成3
王泳2
潘昊杰3
毛金涛3
《中文研究》
2018年10期
摘要:
随着互联网的兴起和发展,数据规模急速增长,如何利用机器阅读理解技术对海量的非结构化数据进行解析,从而帮助用户快速、准确地查找到满意答案,是目前自然语言理解领域中的一个热门课题。该文通过对机器阅读理解中的深度神经网络模型进行研究,构建了RBiDAF模型。首先,通过对DuReader数据集进行数据探索,并对数据进行预处理,从中提取出有利于模型训练的特征。其次在BiDAF模型的基础上提出了基于多文档重排序的RBiDAF机器阅读理解模型,该模型在BiDAF模型四层网络框架的基础上添加了ParaRanking层。其中在ParaRanking层,该文提出了多特征融合的ParaRanking算法,此外在答案预测层,提出了基于先验知识的多答案交叉验证算法,进而对答案进行综合预测。在"2018机器阅读理解技术竞赛"的最终评测中,该模型表现出了不错的效果。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享