请选择 目标期刊

基于PCA和模糊聚类的用电行为分析 下载:68 浏览:375

赵嫚1,2,3 李英娜1,2 杨莉3 《数据与科学》 2020年4期

摘要:
随着智能电网的高速发展,电力系统中负荷数据高维度特性在数据分析过程中造成了数据冗余、聚类复杂、效率低等问题。基于此,本文提出利用主成分分析对负荷数据进行降维,提取主成分特征,并利用FCM聚类算法对负荷数据进行聚类分析,得出不同用电习惯下的负荷数据聚类曲线及不同类别用户的用电行为特征。仿真结果表明本文所提方法,在降低数据维度的同时提高了算法的效率,并为供电企业进行负荷预测、异常检测、差异化服务等提供了帮助。

文本分类研究综述 下载:64 浏览:424

汪岿 刘柏嵩 《数据与科学》 2019年6期

摘要:
在大数据时代,网络上的文本数据日益增长。采用文本分类技术对海量数据进行科学地组织和管理显得尤为重要。文本分类算法的研究起源于上个世纪50年代,一直受到科研人员的广泛关注。本文围绕文本分类的关键技术和基本流程进行重点阐述,主要包括文本预处理、词和文本的分布式表示、特征降维、分类算法等多个模块。其中详细分析了几种分类模型与分类方法,如深度学习、迁移学习、强化学习等等。此外,本文简单介绍了文本分类的评价指标与应用场景,并对当前面临的挑战及未来的发展趋势进行总结、预测。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享