检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于字词特征自注意力学习的社交媒体文本分类方法
下载:
43
浏览:
370
王晓莉1
叶东毅2
《人工智能研究》
2020年9期
摘要:
社交媒体文本中突出的长尾效应和过量的词典外词汇(OOV)导致严重的特征稀疏问题,影响分类模型的准确率.针对此问题,文中提出基于字词特征自注意力学习的社交媒体文本分类方法.在字级别构建全局特征,用于学习文本中各词的注意力权值分布.改进现有的多头注意力机制,降低参数规模和计算复杂度.为了更好地分析字词特征融合的作用,提出OOV词汇敏感度,用于衡量不同类型的特征受OOV词汇的影响.多组社交媒体文本分类任务的实验表明,文中方法在融合字特征和词特征方面的有效性与分类准确度均有较明显的提升.此外,OOV词汇敏感度指标的量化结果验证文中方法是可行有效的.
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享