检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
融合网络图模型和排序模型的论文个性化推荐算法
下载:
63
浏览:
433
刘伟1
刘柏嵩1
王洋洋2
《数据与科学》
2019年3期
摘要:
研究学术论文的质量和用户身份在推荐过程中影响个性化推荐结果的准确率和质量的问题,在研究网络图模型和排序模型的基础上,提出一种融合网络图模型和排序模型的论文推荐算法,将论文质量融入用户-论文二部图,利用重启随机游走生成与用户兴趣相关的学术论文,最后利用排序模型对相关学术论文进行排序生成Top-N推荐列表。通过实验对比,结合论文的质量进行推荐相对于其他方法平均召回率提高了3. 62%,排序模型能够生成满足不同身份用户需求的推荐列表。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享