请选择 目标期刊

基于模板校正与低秩分解的纺织品瑕疵检测方法 下载:386 浏览:393

纪旋 梁久祯 侯振杰 常兴治 刘威 《人工智能研究》 2019年6期

摘要:
针对周期性纺织品存在的拉伸变形问题,提出结合模板校正与低秩分解的纺织品瑕疵检测方法.首先对原图像进行模板校正,减少图像拉伸变形对检测结果的影响.然后提出低秩校正分解模型,包含低秩项、稀疏项和校正项,通过交替方向法优化求解,生成低秩矩阵和稀疏矩阵.最后利用最优阈值分割算法,分割由稀疏矩阵产生的显著图,完成瑕疵检测.在标准数据库上的实验表明,文中方法的查全率有所提高.

基于局部最优分析的纺织品瑕疵检测方法 下载:97 浏览:499

刘威1 常兴治2 梁久祯1 贾靓1 顾程熙1 《人工智能研究》 2018年2期

摘要:
针对复杂的含有周期变化图案的纺织品瑕疵检测,提出改进Markov随机场模型的无监督纺织品瑕疵检测方法.应用随机场实现周期性纺织品图像的瑕疵检测,利用Markov邻域特性,综合判断瑕疵区域.结合周期图像分割,确定Markov随机场最小图像块计算单元,降低算法的计算复杂度.在随机场势函数定义中,综合考虑相邻图像块的差异特性,结合Markov随机场的全局性判断瑕疵点的位置.引入模糊相似关系矩阵概念,求解改进后的模型参数,使所有图像块的局部能量达到最优.实验表明,文中方法对样本的查全率较高.
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享