检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于ATT-IndRNN-CNN的维吾尔语名词指代消解
下载:
26
浏览:
407
祁青山1 田生伟1 禹龙2 艾山·吾买尔2
《中文研究》
2019年2期
摘要:
该文提出一种基于注意力机制(attention mechanism,ATT)、独立循环神经网络(independently recurrent neural network,IndRNN)和卷积神经网络(convolutional neural network,CNN)结合的维吾尔语名词指代消解模型(ATT-IndRNN-CNN)。根据维吾尔语的语法和语义结构,提取17种规则和语义信息特征。利用注意力机制作为模型特征的选择组件计算特征与消解结果的关联度,结果分别输入IndRNN和CNN得到包含上下文信息的全局特征和局部特征,最后融合两类特征并使用softmax进行分类完成消解任务。实验结果表明,该方法优于传统模型,准确率为87.23%,召回率为88.80%,F值为88.04%,由此证明了该模型的有效性。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享