请选择 目标期刊

基于稀疏DBN和双向LSTM的视觉语音识别算法 下载:63 浏览:432

王一鸣 陈恳 《数据与科学》 2019年7期

摘要:
唇部视觉信息作为语音识别的辅助信息一直受到广泛关注,为更好的提取唇部视觉信息,提出一种基于稀疏深度信念网络(Deep Belief Network,DBN)和双向长短期记忆网络(Bidirectional Long Short-Term Memory,Bi LSTM)的视觉语音识别算法。该算法通过在DBN的目标函数后引入混合的l1/2范数和l1范数来实现DBN的稀疏表示,以此稀疏DBN对唇部视觉信息进行稀疏瓶颈特征的提取,再将提取的瓶颈特征送入Bi LSTM进行特征的学习分类。实验表明,该算法能有效的识别唇部视觉信息。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享