请选择 目标期刊

基于元胞负荷特性分析的RBF神经网络空间负荷预测方法 下载:79 浏览:496

肖白1 刘庆永1 牛强2 綦雪松2 王皓1 《电网技术研究》 2018年1期

摘要:
针对元胞历史负荷数据的特点,结合RBF神经网络在非线性拟合方面的优势,提出了一种基于元胞负荷特性分析的RBF神经网络空间负荷预测方法。该方法以元胞的历史负荷数据为基础,横向从元胞的年历史负荷特性入手,描述各元胞年负荷峰值段的发展趋势;纵向从元胞日最大负荷出现的时刻入手,刻画峰值时段的最大负荷数据群。在充分地考虑元胞负荷的季节特性、双峰特性和转移特性对空间负荷预测精度影响的基础上,构建出一种合理的峰值时段最大负荷数据群的双向选取模型。然后采用RBF神经网络对所选取的最大负荷数据群进行训练和预测,进而得到目标年各元胞的年最大负荷预测值。工程实例验证了该方法的实用性和有效性。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享