检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于元胞负荷特性分析的RBF神经网络空间负荷预测方法
下载:
79
浏览:
496
肖白1 刘庆永1 牛强2 綦雪松2 王皓1
《电网技术研究》
2018年1期
摘要:
针对元胞历史负荷数据的特点,结合RBF神经网络在非线性拟合方面的优势,提出了一种基于元胞负荷特性分析的RBF神经网络空间负荷预测方法。该方法以元胞的历史负荷数据为基础,横向从元胞的年历史负荷特性入手,描述各元胞年负荷峰值段的发展趋势;纵向从元胞日最大负荷出现的时刻入手,刻画峰值时段的最大负荷数据群。在充分地考虑元胞负荷的季节特性、双峰特性和转移特性对空间负荷预测精度影响的基础上,构建出一种合理的峰值时段最大负荷数据群的双向选取模型。然后采用RBF神经网络对所选取的最大负荷数据群进行训练和预测,进而得到目标年各元胞的年最大负荷预测值。工程实例验证了该方法的实用性和有效性。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享