检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于深度神经网络和加权隐反馈的个性化推荐
下载:
45
浏览:
375
薛峰 刘凯 王东 张浩博
《人工智能研究》
2020年8期
摘要:
改进的矩阵分解(SVD++)将用户和物品特征向量的内积作为用户对物品的评分,而内积无法捕捉用户与物品之间复杂的高阶非线性关系.此外,SVD++在融入用户隐式反馈时,未区分不同交互物品对于用户特征表达的贡献.针对上述问题,文中提出基于深度神经网络和加权隐反馈的推荐算法(DeepNASVD++),采用深度神经网络建模用户与物品之间的关系,使用注意力机制计算历史交互物品在建模用户隐式反馈时的权重.在公开数据集上的实验验证文中算法的有效性.
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享