请选择 目标期刊

基于深度神经网络和加权隐反馈的个性化推荐 下载:45 浏览:375

薛峰 刘凯 王东 张浩博 ​ 《人工智能研究》 2020年8期

摘要:
改进的矩阵分解(SVD++)将用户和物品特征向量的内积作为用户对物品的评分,而内积无法捕捉用户与物品之间复杂的高阶非线性关系.此外,SVD++在融入用户隐式反馈时,未区分不同交互物品对于用户特征表达的贡献.针对上述问题,文中提出基于深度神经网络和加权隐反馈的推荐算法(DeepNASVD++),采用深度神经网络建模用户与物品之间的关系,使用注意力机制计算历史交互物品在建模用户隐式反馈时的权重.在公开数据集上的实验验证文中算法的有效性.
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享