检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于词向量的藏文语义相似词知识库构建
下载:
27
浏览:
340
龙从军1,2 周毛克3 刘汇丹2
《中文研究》
2020年4期
摘要:
词向量在自然语言处理研究的各个领域发挥着重要作用。该文从语言学角度出发,讨论了词向量技术与语言学理论的关系;根据词向量的特征,提出利用藏文词向量构建语义相似词知识库。该文以哈尔滨工业大学的《词林》为基础,通过汉藏双语词典对译,在获取对译词的词向量的基础上,计算对译词的词向量与原子词群平均词向量的差值,利用不同的差值,自动筛选出与原子词群语义相似度较小的词。该文分别以藏文的词和音节为单位计算词向量,自动筛出不属于原子词群的词,通过对自动筛选结果与人工筛选结果对比,发现两者具有较高的一致性,这说明词向量计算结果与人的语言直觉具有较高的一致性。总体来说,该文所采用的方法有助于提高藏文语义相似词知识库构建效率。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享