请选择 目标期刊

现代藏语名词性短语结构规则研究 下载:87 浏览:481

完么扎西 尼玛扎西 《中国科学研究》 2018年1期

摘要:
文章在深入研究藏语语法的基础上,通过对藏语真实语料的统计和分析,归纳了现代藏语名词性短语的2种典型结构类型及9种具体组合模式,并面向藏语计算语言学的实际需求,借鉴现代汉语短语结构规则研究方法,尝试以形式化的方式对现代藏语名词性短语的整体性质及对其内部组成成分约束条件进行了全面的描述。

精细化的中文词性标注评测集的研制 下载:39 浏览:289

唐乾桐1,2 常宝宝1 詹卫东1,2,3 《中文研究》 2020年2期

摘要:
该文提出了一套精细化的中文词性标注评测体系。该文的工作重点在于确立其中的评测项目以及每个项目所对应的词例,提出了比对、归类、合取的方法;依此,该文初步建立了规模为5 873句、涵盖了2 326项词例和70个评测项目的评测试题集,并用这套试题集对几个常见的开源词性标注程序进行了评测。最后,该文指出了精细化评测体系将评测项目和评测语料联系起来的好处——在传统体系中,两者是分开的。该文从评测项目的价值和评测语料的组织性两个方面阐述了该文的评测体系相对于传统评测体系的优势,并指出了利用该文提出的评测体系改进被测程序的方法。

融合词结构特征的多任务老挝语词性标注方法 下载:43 浏览:65

王兴金 周兰江 张建安 周枫 《中文研究》 2019年9期

摘要:
目前,老挝语词性标注研究处于初期,可用标注语料有限,且老挝语吸收了多种外来词,导致标注语料库存在大量稀疏词。多任务学习是有效识别稀疏词的一种方法,该文研究了老挝词的结构特征,并构建了结合词性标注损失和主辅音辅助损失的多任务老挝语词性标注模型。老挝词有很多词缀可以表达词性信息,因此模型还采用了字符级别的词向量来获取这些词缀信息。特别地,老挝语的句式较长,模型用注意力机制防止长远上下文特征丢失。实验结果表明:相比其他研究方法,该模型的词性标注准确率在有限标注语料下取得更好的表现(93.24%)。

一种新的朝鲜语词性标注方法 下载:45 浏览:362

金国哲 崔荣一 《中文研究》 2018年9期

摘要:
朝鲜语词性标注是朝鲜语信息处理的基础,其结果直接影响后续朝鲜语自然语言处理的效果。首先为了解决朝鲜语词性标注中遇到的形态素实际写法与原形不一致的问题,该文提出了一种在seq2seq模型的基础上融合朝鲜语字母信息的朝鲜语形态素原形恢复方法;其次,在恢复形态素原形的基础上,利用LSTM-CRF模型完成朝鲜语分写及词性标注。实验结果表明,该文提出的方法词性标注F1值为94.75%,优于其他方法。

引入词性标记的基于语境相似度的词义消歧 下载:27 浏览:271

孟禹光 周俏丽 张桂平 蔡东风 《中文研究》 2018年4期

摘要:
目前的语境向量模型在对语义空间建模的时候,没有考虑到同一个词的不同词性具有不同的含义,将它们看作同一个点进行建模,导致得到的语境向量质量不高,使用这种语境向量计算语境相似度效果不好。针对该类问题,提出了一种加入词性特征的语境向量模型,加入词性后,可以将原本用语义空间中一个点表示的几个语义区分出来,得到质量更好的语境向量和语境相似度,进而得到更好的消歧效果。实验结果表明,这种建模方式可以有效区分不同词性的语义,在2004年的Senseval-3测试集上进行测试,准确率达到了75.3%,并在SemEval-13和SemEval-15公开测试集上进行了测试,消歧效果相比未引入词性特征的模型均得到了提升。

基于门控循环神经网络词性标注的蒙汉机器翻译研究 下载:68 浏览:442

刘婉婉 苏依拉乌尼尔仁庆道尔吉 《中文研究》 2018年2期

摘要:
统计机器翻译可以通过统计方法预测出目标词,但没有充分理解原文语义关系,因而得到的译文质量不高。针对该问题,利用一种基于门控单元循环神经网络结构来对蒙汉神经机器翻译系统进行建模,引入注意力机制来获取双语词语的对齐信息,并在构建字典过程中对双语词语进行词性标注来强化语义,以此来缓解因欠训练导致的错译问题。实验结果表明,与RNN的基准系统和传统的统计机器翻译方法相比,该方法 BLEU值得到一定的提升。

基于词性约束的藏文分词策略与算法 下载:28 浏览:328

才让卓玛1 才智杰2 《当代中文学刊》 2020年5期

摘要:
自动分词作为自然语言处理基础性的研究课题,一直被学术界所关注,随着藏语自然语言处理技术研究的不断深入,藏文分词也面临越来越多的挑战。该文通过分析藏文自动分词研究现状,提出基于词性约束的藏文分词策略与算法。相对于传统方法,该方法不仅能有效地预防和处理各类歧义现象,而且在藏文未登录词处理方面有较好表现。

采用Stack-Tree LSTM的汉语一体化依存分析模型 下载:41 浏览:382

刘航 刘明童 张玉洁 徐金安 陈钰枫 《当代中文学刊》 2019年3期

摘要:
在汉语一体化依存分析中,如何利用分词、词性标注和句法分析的中间结果作为分析特征成为核心问题,也是三个任务相互制约协调、共同提高性能的关键所在。目前无论基于特征工程的方法还是基于深度学习的方法尚无法充分利用分析过程中依存子树的完整信息,而依存子树作为中间结果的主要成分对三个任务的后续分析具有重要的指导意义。该文在基于转移的依存分析框架下,提出Stack-Tree LSTM依存子树编码方法,通过对分析栈中所有依存子树的有效建模,获取任意时刻的依存子树的完整信息作为特征参与转移动作决策。利用该编码方式提出词性特征使用方法,融合N-gram特征构建汉语一体化依存分析神经网络模型。最后在宾州汉语树库上进行了验证实验,并与已有方法进行了比较。实验结果显示:该文提出的模型在分词、词性标注和依存分析任务上的性能非常接近特征工程最好的结果,并且均超过已有的一体化依存分析神经网络模型。

基于联合模型的藏文实体关系抽取方法研究 下载:43 浏览:428

夏天赐1,2 孙媛1,2 《当代中文学刊》 2018年9期

摘要:
从无结构文本中抽取实体与实体之间的关系是自然语言处理领域的重要研究内容,同时也为构建知识图谱、问答系统等应用提供重要支撑。基于联合模型的实体关系抽取任务将实体识别和关系抽取同时进行,克服了传统实体关系抽取任务中先识别句子中的实体,然后再进行实体关系判断这两次任务中的错误累加。该文针对藏文语料匮乏、实体识别准确率不高等问题,提出了基于联合模型抽取藏文实体关系的方法。基于藏文实体关系抽取任务,提出以下方案:(1)针对藏文分词准确率不高的问题,对藏文进行字级和词级两种方式进行预处理,并给出对比实验,结果表明采用字级处理方式较词级处理方式效果有所提高。(2)藏文是一种语法规则比较强的语言,名词、格助词等能明确指示句子各组块之间的语法和语义结构关系,因此该文将藏文的词性标注特征加入到藏文的字词向量中,实验结果证明了方法的有效性。(3)该文借鉴了联合模型处理的优势,提出基于联合模型处理方式,采用端到端的BiLSTM框架将藏文实体关系抽取任务转变为藏文序列标注的问题,实验结果表明,该文的方法较传统的基于藏文处理方式,如SVM算法和LR算法,准确率提高了30%~40%。

基于词性软模板注意力机制的短文本自动摘要方法 下载:47 浏览:340

张亚飞1 左一溪2 余正涛1,2 郭军军1,2 高盛祥1,2 《人工智能研究》 2020年11期

摘要:
任务中,带有直观主谓宾结构的摘要句语义完整性较强,但词性组合对该结构具有约束作用.为此文中提出基于词性软模板注意力机制的短文本自动摘要方法.首先对文本进行词性标记,将标记的词性序列视为文本的词性软模板,指导方法构造摘要句的结构规范,在编码端实现词性软模板的表征.再引入词性软模板注意力机制,增强对文中核心词性(如名词、动词等)的关注.最后在解码端联合词性软模板注意力与传统注意力,产生摘要句.在短文本摘要数据集上的实验验证文中方法的有效性.

浅析词性在初中英语写作中的实施策略 下载:258 浏览:2839

熊露梅 《英语教学》 2023年1期

摘要:
伴随着课程改革不断向前推进,写作教学成为众多英语教学的重难点知识,并尝试了很多方法进行创新,以此促进学生的写作能力不断提升和发展。单词是写作的基础,词性的合理运用直接决定了写作的好与坏,因此在写作教学中教师们认识到词性教学的益处后,也非常重视词性教学。我将结合实际教学经验阐述初中英语教师如何将词性教学渗透到英语写作教学中,以此促使学生的英语写作能力不断提升,同时促使学生的英语学习效率逐步发展。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享