检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于流形排序和联合连通性先验的显著性目标检测
下载:
69
浏览:
480
王延召
彭国华
延伟东
《人工智能研究》
2019年1期
摘要:
为了进一步提高显著性目标检测的准确性,提出基于不同特征流形排序和联合连通性先验的显著性检测算法.针对现有基于流形排序的算法在图的构建中存在的边权重计算和顶点的连接问题,使用不同种特征计算顶点间边的权重,并且改进顶点的连接方式,得到流形排序显著图.同时结合边界连通性先验和前景连通性先验得到联合连通性先验显著图.在不同尺度下进一步融合两种显著性结果,得到最终的显著图.通过与16种算法在4种数据集上的对比表明,文中算法可以得到更清晰、准确的检测结果.
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享