检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于边重要度的矩阵分解链路预测算法
下载:
84
浏览:
493
郭丽媛 王智强 梁吉业
《人工智能研究》
2018年3期
摘要:
基于矩阵分解的链路预测方法的领域适应性较好.然而在已有基于矩阵分解的链路预测方法中,0-1矩阵的网络数据表示对网络中未知连边的假设较强,同时对网络中已知连边的重要度无区分性.为此,文中放松0-1矩阵的网络数据表示假设,对未知节点对连边不做任何假设,并提出边重要度度量方法,对网络中已知连边进行重要度度量,最终建立基于网络权重矩阵分解的链路预测模型.在8个公开网络数据集上对比基于度量的链路预测方法和已有矩阵分解方法,文中方法链路预测结果更好.
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享