请选择 目标期刊

基于简单循环单元的深层神经网络机器翻译模型 下载:41 浏览:447

张文1,2 冯洋1,2 刘群1,3 《中文研究》 2018年9期

摘要:
基于注意力机制的神经网络机器翻译模型已经成为目前主流的翻译模型,在许多翻译方向上均超过了统计机器翻译模型,尤其是在训练语料规模比较大的情况下,优势更加明显。该模型使用编码器—解码器框架,将翻译任务建模成序列到序列的问题。然而,在基于门控循环单元(gated recurrent unit,GRU)的编码器—解码器模型中,随着模型层数的增加,梯度消失的问题使模型难以收敛并且严重退化,进而使翻译性能下降。该文使用了一种简单循环单元(simple recurrent unit,SRU)代替GRU单元,通过堆叠网络层数加深编码器和解码器的结构,提高了神经网络机器翻译模型的性能。我们在德语—英语和维语—汉语翻译任务上进行了实验,实验结果表明,在神经网络机器翻译模型中使用SRU单元,可以有效地解决梯度消失带来的模型难以训练的问题;通过加深模型能够显著地提升系统的翻译性能,同时保证训练速度基本不变。此外,我们还与基于残差连接(residual connections)的神经网络机器翻译模型进行了实验对比,实验结果表明,我们的模型有显著性优势。

基于Wasserstein距离分层注意力模型的跨域情感分类 下载:64 浏览:371

杜永萍 贺萌 赵晓铮 《人工智能研究》 2019年11期

摘要:
跨领域情感分类任务旨在利用已知情感标签的源域数据对缺乏标记数据的目标域进行情感倾向性分析.文中提出基于Wasserstein距离的分层注意力模型,结合Attention机制,采用分层模型进行特征提取,将Wasserstein距离作为域差异度量方式,通过对抗式训练自动捕获领域共享特征.进一步构造辅助任务捕获与共享特征共现的领域独有特征,结合两种特征表示完成跨域情感分类任务.在亚马逊评论等数据集上的实验表明,文中模型仅利用领域共享特征就达到较高的正确率,在不同的跨领域对之间具有较好的稳定性.

基于轨迹挖掘模型的旅游景点推荐 下载:67 浏览:359

张舜尧1 常亮2 古天龙1 宾辰忠2 孙彦鹏3 朱桂明1 贾中浩1 《人工智能研究》 2019年10期

摘要:
针对旅游推荐系统中基于内容的推荐和基于协同过滤的推荐方法的数据稀疏性和冷启动问题,以及现有轨迹挖掘方法忽略旅游轨迹中高级语义的问题,提出基于门控循环单元轨迹挖掘模型的推荐方法.为了充分利用旅游轨迹的高级语义信息,基于循环神经网络设计轨迹挖掘表示模型,对游客的旅游轨迹进行建模,在利用游客历史轨迹建模后向游客提供个性化旅游景点推荐.在真实旅游轨迹数据集上的实验表明,相比广泛使用的基线方法,文中方法在景点推荐的准确性和质量上都有一定提高.

基于二次模式分解和级联式深度学习的超短期风电功率预测 下载:87 浏览:466

殷豪 欧祖宏 陈德 孟安波 《电网技术研究》 2020年6期

摘要:
风电功率预测对电力系统的经济调度和运行至关重要。为了减少集合经验模式分解产生的高频本征模函数IMF1对预测结果造成的影响,使用小波包分解进一步将IMF1子序列分解成若干子系列。针对传统机器学习无法处理时间序列间关联信息和时间相关性的缺陷,提出了级联式卷积神经网络-门控循环单元预测模型,提取风电功率子序列、风速子序列和风向之间的耦合关系的隐含特征,并进一步挖掘各个时间序列之间的时间相关特征。实验结果表明,所提出的预测模型优于其他预测模型,并验证了所提预测模型的有效性。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享