请选择 目标期刊

CSAMT在浙江省武义县水文勘查中的应用 下载:64 浏览:492

赵军1 彭荣华1,2 王思兵1 陈斌1 《地球科学探索》 2020年6期

摘要:
可控源音频大地电磁法(CSAMT)具有勘探深度大、分辨率高及抗干扰能力强的优点。为了解浙江省武义县测区地下电性结构,从而查明该区地下水赋存情况,在勘查区布置了两条CSAMT测线,通过对所采集的两条CSAMT剖面数据进行处理与二维反演,获得了工区地下1 km以浅的电性分布特征。并结合该区地质与水文资料得出了CSAMT与水文工程地质联合剖面图,推断出了不同地层分界面及断裂构造深部延展情况,为该区下一步的地下水钻孔工作提供了有效的参考依据。

“3S”技术在水土流失动态监测野外核查中的应用研究 下载:86 浏览:483

陈斌1,2 李俊1 高智1 邹小玲1 季耀波1 《水土保持与应用》 2018年1期

摘要:
为减少野外工作中的不确定性、提高野外核查的准确性和效率,笔者结合多年外业工作经验,总结了基于"3S"技术的水土流失动态监测野外核查方法,并以太湖流域水土流失动态监测项目为例,介绍了水土流失动态监测野外核查工作中数据来源、前期准备、野外核查、内业整理等方面的具体工作。实践表明,采取基于"3S"技术的水土流失动态监测野外核查工作方法,有助于规范工作流程、提高工作效率。

高通量抗污染碳量子点/聚砜纳米复合分离膜的制备 下载:62 浏览:465

陈斌1 张佳露1 张岩1 赵海超2 朱丽静2 《材料科学研究》 2020年10期

摘要:
先以4-氨基水杨酸(ASA)为原料发生水热反应合成碳量子点(CDs),随后将其共混分散在铸膜液中用非溶剂诱导相分离法制备了PSF/CDs纳米复合膜。透射电子显微镜(TEM)观测和傅里叶变换红外光谱(FTIR)证实,CDs具有小尺寸和大量亲水基团的特点。使用水接触角分析(WCA)、扫描探针显微镜(SPM)和扫描电子显微镜(SEM)对分离膜进行了表征,发现纳米复合膜具有比原始膜更好的亲水性和更多的孔洞,从而使分离膜具有更高的通量和抗污染性能。PSF/CDs膜的通量回复率(FRR)超过90%,总污染率(Rt)低于60%,且可逆型污染为主要污染源。CDs含量(质量分数)为2%的复合膜整体效果最佳。具有更强抗污染能力的纳米复合膜,其水通量甚至为纯PSF膜的3倍。

高通量抗污染碳量子点/聚砜纳米复合分离膜的制备 下载:60 浏览:440

陈斌1 张佳露1 张岩1 赵海超2 朱丽静2 《材料科学研究》 2020年10期

摘要:
先以4-氨基水杨酸(ASA)为原料发生水热反应合成碳量子点(CDs),随后将其共混分散在铸膜液中用非溶剂诱导相分离法制备了PSF/CDs纳米复合膜。透射电子显微镜(TEM)观测和傅里叶变换红外光谱(FTIR)证实,CDs具有小尺寸和大量亲水基团的特点。使用水接触角分析(WCA)、扫描探针显微镜(SPM)和扫描电子显微镜(SEM)对分离膜进行了表征,发现纳米复合膜具有比原始膜更好的亲水性和更多的孔洞,从而使分离膜具有更高的通量和抗污染性能。PSF/CDs膜的通量回复率(FRR)超过90%,总污染率(Rt)低于60%,且可逆型污染为主要污染源。CDs含量(质量分数)为2%的复合膜整体效果最佳。具有更强抗污染能力的纳米复合膜,其水通量甚至为纯PSF膜的3倍。

反应型有机修饰剂对环氧树脂/粘土纳米复合材料热/机械性能的影响 下载:81 浏览:472

陈斌1 裴鑫鹏1 徐扬1 张英2 《材料科学研究》 2020年5期

摘要:
使带有环氧基团的三缩水甘油基对氨基苯酚(TGPAP)分别与溴代正丁烷(BB)、2-溴乙醇(BE)反应,合成了反应型粘土有机修饰剂溴化(正定烷基)双环氧基(4-环氧醚基)铵(TGPAPB)和溴化(2-羟乙基)双环氧基(4-环氧醚基)铵(TGPAPE)。用这两种修饰剂改性粘土,分别制备出具有相同反应官能团但与环氧树脂的相容性略有不同的两种有机化粘土(B-Clay和E-Clay)。再用"粘土淤浆复合法"制备出两种环氧树脂/粘土纳米复合材料,研究了两种反应型有机修饰剂对纳米复合材料的结构和性能的影响。结果表明:带有羟基的E-Clay以高度无规剥离形式均匀分布在环氧树脂基体中;而B-Clay则形成了无规剥离/插层混合结构。两种粘土均参与固化反应在环氧树脂基体和粘土片层间产生了较强的界面作用力,从而显著提高了纳米复合材料的拉伸强度。粘土质量分数为3%的两种纳米复合材料,其拉伸强度分别达到32.4 MPa(E-Clay)和28.0 MPa(B-Clay),比对应的纯环氧树脂聚合物分别提高了76.47%和52.51%。同时,这两种纳米复合材料的玻璃化转变温度(Tg)也略有提高。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享