检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
一种基于GMM和MeanShift的目标跟踪算法
下载:
93
浏览:
492
陈超1 赫春晓2
《测绘科学与技术》
2020年2期
摘要:
经典MeanShift算法仅使用了影像的颜色直方图信息表示目标特征,并不包含目标的空间位置、纹理特征等其它信息,因此当目标被遮挡或目标和背景颜色相似时,容易跟踪失败。针对此种情况,结合了颜色直方图与空间位置信息对经典算法进行改进。在获取目标和背景区域的样本数据后,利用高斯混合模型获取每个颜色单元的质心位置,并利用颜色直方图与空间信息计算得到新的候选区域中心位置,进而完成目标跟踪。实验表明,改进后的算法使用了目标区域颜色分布的空间信息,改善了传统MeanShift算法中丢失像素点空间信息的不足,在背景复杂时依然能够成功跟踪;避免了迭代计算,提高了跟踪效率。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享