检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于分层聚类的黑色签字笔笔迹拉曼光谱研究
下载:
22
浏览:
225
马枭1 王晓宾1 王新承2
《化学研究前沿》
2020年8期
摘要:
提出一种结合分层聚类和判别分析对笔迹成分进行分类检验的方法。利用激光显微共聚焦拉曼光谱仪对收集的市面上常见的130支黑色签字笔笔迹样本进行检测。对测量数据进行Savitzky-Golay卷积平滑和Z-score标准化处理,利用组间连接法、组内连接法和离差平方和法三种分层聚类方法对数据进行分类,将三种聚类方法所得分类结果作为判别依据进行判别分析,检验聚类方法的正确率。结合聚类树状图与正确率,最终选择在分类数为4时原始分类结果正确率为100%、留一交叉验证分类结果正确率为98.5%的离差平方和法,提出了适用于黑色签字笔笔迹拉曼光谱数据的分层聚类方法和判别验证方法。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享