请选择 目标期刊

机器阅读理解中观点型问题的求解策略研究 下载:79 浏览:348

段利国 高建颖 李爱萍 《中文研究》 2019年5期

摘要:
针对机器阅读理解中观点型问题的求解,提出一个端到端深度学习模型,使用Bi-GRU对文章和问题进行上下文语义编码,然后运用基于拼接、双线性、点乘和差集4种函数的注意力加上Query2Context和Context2Query两个方向注意力的融合算法获取文章和问题的综合语义信息,之后运用多层注意力转移推理机制不断聚焦,进一步获取更加准确的综合语义,最终将其与候选答案进行比较,选出正确答案。该模型在AIchallager2018观点型阅读理解中文测试数据集上准确率达到76.79%,性能超过基线系统。此外,该文尝试文章以句子序列作为输入表示进行答案求解,准确率达到78.48%,获得较好试验效果。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享