检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于新型卷积神经网络构建矿山灾害事件检测模型
下载:
62
浏览:
271
刘鹏1
魏卉子2
鹿晓龙2
刘明明3
《中文研究》
2020年4期
摘要:
事件检测属于自然语言处理的核心任务及难点之一,使用长短时记忆网络(LSTM)和卷积神经网络(CNN)进行的相关研究越来越广泛,但面对篇章级别的事件文本时,参数量庞大的LSTM与语义缺失明显的CNN导致模型检测准确性和收敛性均欠佳。该文结合迭代空洞卷积神经网络和高速神经网络,提出基于混合特征的高速迭代空洞卷积神经网络,力图优化深层模型训练中常见的梯度消失与爆炸现象,提取性能更优的篇章级文本特征。实验结果表明,该方法与当下主流的LSTM和CNN模型相比,矿山灾害事件检测效果更为理想,收敛性及训练效率也表现更优。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享