请选择 目标期刊

基于标签增强的机器阅读理解模型 下载:61 浏览:358

苏立新1,2 郭嘉丰2 范意兴1 兰艳艳2 程学旗3 《人工智能研究》 2020年5期

摘要:
抽取式问答中已有模型仅建模答案的边界,忽视人的潜在标注过程,导致模型仅学习到表面特征,影响泛化能力.因此,文中提出基于标签增强的机器阅读理解模型(LE-Reader),模拟人的标注过程.LE-Reader模型同时建模答案所在句子、答案内容和答案边界.根据用户标注的答案边界推断正确答案的句子和答案内容作为标签,监督模型的学习过程.通过多任务学习的方式融合3个损失函数.预测时融合3种建模结果,确定最终答案,提高模型的泛化性能.在SQuAD数据集上的实验验证LE-Reader的有效性.
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享