检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于深度置信网络(DBN)的赤潮高光谱遥感提取研究
下载:
6
浏览:
428
姜宗辰1,2 马毅1,2 江涛1 陈琛1,2
《海洋研究》
2020年期
摘要:
赤潮是严重的海洋灾害,有效监测赤潮对于保护海洋生态环境具有重要意义。高光谱遥感具有光谱分辨率高、图谱合一等优势,适合于海洋赤潮监测。深度学习是机器学习领域的前沿,为高光谱遥感分类提供了新的思路。深度置信网络(Deep Belief Network,DBN)兼具监督分类与非监督分类的特点,通过构建DBN模型,将DBN应用于赤潮灾害遥感监测中,应用渤海机载高光谱遥感数据开展赤潮分类,以达到提取高光谱图像中赤潮水体范围的目的。通过设置对照实验,对比经典的SVM监督分类方法与ISODATA非监督分类方法,发现DBN模型在相同实验条件下具有更高的分类精度,赤潮遥感提取精度提高了3%~11%。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享