请选择 目标期刊

模块化粒子输运程序包PHEN的开发与应用 下载:46 浏览:10

朱金辉 陶应龙 卓俊 谢红刚 左应红 商鹏 韦源 牛胜利 《物理进展》 2018年5期

摘要:
为满足通用蒙特卡罗程序难以处理的特定问题的粒子输运模拟需求,开发了模块化粒子输运蒙特卡罗模拟程序包PHEN。该程序包能够模拟中子、光子、电子及质子与物质相互作用的主要物理过程,具备树结构建模功能、低能带电粒子和反冲质子模拟功能及可定制的数据统计功能。利用PHEN程序包,计算了中子与特定核素作用生成次级光子的产额和平均能量,实现了基于指向概率法的点通量角度谱计算,并建立了中子输运时间特性模拟计算方法。PHEN程序包的基本功能模块可用于粒子输运模拟技术应用研究。

溴化镧(LaBr3:Ce) γ谱仪前端读出电子学电路 下载:63 浏览:460

陈彦丽1 谭新建1,2 卢毅1 宋朝晖1,2 易义成1 渠红光1 《物理进展》 2018年9期

摘要:
设计了一种结构简单、噪声低、功耗小的溴化镧(LaBr3:Ce)γ谱仪前端读出电子学电路。该电路包括电压灵敏前置放大电路、谱仪放大电路和供电电源3部分,电路的设计基于传统核电子学方法和较新的电子元器件,采用低噪声设计技术,在能谱测量中获得了较高的能量分辨率。文中首先介绍了电路的设计方案,包括各部分电路原理、功能和设计要点;然后开展了电路仿真和电路板设计;最后通过实验进行电路功能验证。实验表明:基于研制的前端读出电子学电路、溴化镧(LaBr3:Ce)探测器及数字多道分析器组成的γ谱仪系统,对137Cs 662 keV γ能峰的能量分辨率可达2.7%,谱仪系统性能稳定。

基于SiC的裂变靶室中子灵敏度标定技术 下载:47 浏览:451

陈亮 刘金良 刘林月 张显鹏 张忠兵 欧阳晓平 阮金 陆金鹏 何世熠 《物理进展》 2018年9期

摘要:
为实现对基于SiC探测器的裂变靶室极低中子灵敏度的准确标定,提出了利用不同的中子源分别测量中子探测效率与裂变碎片的等效平均沉积能量,再将实验结果合成得到中子灵敏度的标定方法。利用该方法,获得了SiC探测器与不同厚度235 U或238 U裂变靶组成的探测系统对14.9 MeV中子的响应灵敏度,灵敏度的相对标准不确定度为7.5%(k=1),较好地满足了应用需求。与传统带屏蔽体的标定方法相比,该方法测得的中子灵敏度可标定下限拓展了1个量级以上,同时,散射本底的影响可以通过挡影锥的方法准确扣除,显著提高了标定结果的精度。

多针水开关放电通道电流均匀性对开关电感的影响 下载:63 浏览:475

杨实 黄种亮 任书庆 《物理进展》 2018年8期

摘要:
通过理论计算和数值模拟方法研究了"闪光二号"加速器多针水开关放电通道电流均匀性对开关电感的影响,得到了各个放电通道电流分布不均匀对开关电感的影响规律。理论计算和数值模拟结果均表明,随着多针水开关放电通道电流不均匀性的增加,开关电感显著提高。采用保角变换和构造拉格朗日函数的方法证明了当多针水开关所有放电通道电流一致时开关电感最小,得到了"闪光二号"加速器多针水开关电感最小值为27nH,最大值为153nH。

半导体器件辐射效应数值模拟技术研究现状与发展趋势 下载:65 浏览:421

陈伟丁 李利 郭晓强 《物理进展》 2018年3期

摘要:
半导体器件辐射效应数值模拟技术主要研究辐射与材料相互作用的粒子输运模拟、器件内部辐射感生载流子漂移扩散的器件级模拟及器件性能退化对电路功能影响的电路级模拟等,是抗辐射加固设计和抗辐射性能评估中的关键技术。随着先进微电子技术的快速发展,新材料、新结构和新器件的应用为辐射效应建模与数值仿真带来了新挑战。辐射效应数值模拟涉及材料学、电子学和核科学的交叉领域,技术难度大,建模和仿真比较复杂,一些瓶颈问题尚未完全解决。围绕粒子输运模拟、器件级辐射效应数值模拟和电路级辐射效应数值模拟3个方面,梳理急需解决的关键技术问题,介绍半导体器件辐射效应数值模拟技术的发展趋势。

美国快Z箍缩装置的建设、应用与发展规划 下载:95 浏览:412

焦晓静1 孙凤举1.2 杨海亮1.2 《物理进展》 2018年2期

摘要:
综述了美国圣地亚国家实验室ZR(Z Refurbished)装置的建设背景、结构及最新进展,梳理了自2011年以来在ZR装置上开展的实验研究工作,主要包括辐射效应、惯性约束聚变、极端条件下的材料科学和天体物理学等研究。最后,介绍了美国未来基于直线变压器驱动器技术的快Z箍缩装置发展规划。

典型无人机飞行控制系统HEMP效应研究 下载:85 浏览:495

赵墨 吴伟 李进玺 程引会 马良 郭景海 刘逸飞 《物理进展》 2018年1期

摘要:
利用飞行仿真系统、数据采集系统和视景仿真系统开展了地面模拟飞行状态下无人机电子学系统抗高空电磁脉冲效应研究,获取了典型效应现象,分析了薄弱环节,为后续开展其他类型电子学系统的高空电磁脉冲效应研究奠定了技术基础。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享