检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
一种基于差分进化的社团检测算法
下载:
86
浏览:
483
孙韩林1,2 马素刚1,2 王忠民1,2
《软件工程研究》
2018年4期
摘要:
复杂网络的社团结构分析可抽象为一个优化问题,用进化算法求解。进化类算法的一个基本问题是如何把问题的候选解编码到进化个体中。本文将索引局部邻接表示法用于社团检测进化算法的个体表示,把社团结构分析转化为一个整数优化问题。在该个体表示方法的基础上,提出了一种基于差分进化的社团检测算法。在一组合成网络和真实网络上验证了算法性能,并与两种基于遗传算法的典型社团检测进化算法进行了对比。实验结果表明,当网络社团结构较为清晰时,基于差分进化的算法检测到的社团结构具有更好的质量。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享