检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于核偏最小二乘的矿区土壤Cu含量高光谱反演
下载:
84
浏览:
470
郭云开1,2 钱佳1,2 蒋明1,2 章琼1,2
《中国土壤》
2019年7期
摘要:
本文探究应用高光谱遥感手段反演铜锌矿区土壤Cu含量的可行性,以湖南省某矿区土壤为例。在对原始高光谱重采样、一阶微分、对数、连续统预处理后,分别进行与Cu含量的相关性分析,最终选用一阶微分变换光谱数据进行建模。在建模反演时,针对多元线性回归(MFL)和传统偏最小二乘(PLS)在应用过程中没有考虑变量间的非线性关系的缺点,提出了基于核偏最小二乘(KPLS)回归的土壤Cu含量预测模型。研究结果表明,相对于PLS和MFL,KPLS能较好的提升土壤Cu含量估算能力,预测样本的平均相对误差为13.25%,明显高于MFL的32.22%和PLS的14.18%。研究结果也表明了高光谱遥感手段可以反演矿区土壤Cu含量,且核偏最小二乘模型也可为其它土壤重金属的反演提供参考。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享