1基本概述
1.1发电厂热能动力系统的原理分析
现阶段发电厂热能动力系统中所采用的热能动力装置主要指能够将热能转化为机械能而产生原动力的成套热力设备。使热量可从温度较高的热源处获取,这样在高压以及高温的作用下会发生膨胀,以此排除循环的废热。其中涉及的热源主要得益于如煤炭等矿物燃料的燃烧所产生的热能。但选用的大多矿物燃料多为不可再生资源,在投入使用过程中往往因技术或人员意识等因素影响造成生态破坏与环境的污染。尤其对于耗能较大的发电企业近年来在实践过程中发现,热能动力系统在热能向机械能转化并在废热排放过程中可挖掘出较大的节能潜力。因此,发电厂资源的合理利用以及减小其对生态环境的破坏可从优化与节能改造热能动力系统中进行。
1.2发电厂热能动力系统应用的必要性分析
能源短缺与生态破坏问题是发电厂未来生产过程中面临的主要问题。因此对热能动力系统的优化与节能技术应用是确保其获取良好经济效益的必然途径。在未来节能过程中会逐渐引进先进的科学技术使其能源利用效率得以改善,降低工业成本的同时也可最大程度上减少生产过程中造成的环境污染。而且其自身存在的节能潜力优势也将在未来发展过程中不断被挖掘出来。
2发发电厂热能动力系统优化与节能改造
2.1化学补充水系统
目前,发电厂机组均为抽凝式,在对热能动力系统进行化学补水过程中,主要方法为在凝器或除氧器中补入化学水,在实际补水时,如果补水温度偏低,则需要借助其他装置,以此保证凝结器中补充水的有效进入,通常情况下,其形式为喷雾式,此时回收了部分排气废热,并在一定程度在改善了凝器真空。同时,生产实践中,也可采用低压加热器,此时化学补水实现了逐级加热,并且对高位能蒸汽量进行了最大化的控制,使其保持在最低程度,进而系统具有了更为明显的经济性与高效性。
2.2废水余热回收利用
在除氧器运行时,由于其排放蒸汽,不仅会损失热量,还会损失工质,因此,优化热能动力系统过程中,应利用冷却器,以此减少热量损失,避免工质损失问题的出现。在锅炉运动过程中其排污方式主要有两种,一种为定期排污,另一种为连续排污,前者为了有效排放污水,需要扩容降压,此时便会造成废水余热的浪费;后者虽然实现了对二次蒸汽的回收,但其回收率偏低,同时排放过程中也浪费了蒸汽与废水余热。在此情况下,发电厂锅炉排污不仅浪费了废水余热,同时也影响了生态环境,为了扭转此局面,发电厂应充分利用排污废热回收器,以此保证锅炉污水余热的有效回收,同时在扩容条件下,为了充分利用污水,可利用排污冷却器,在此基础上,能源利用率将大幅度提高,同时也利于节能降耗、环境保护目标的达成。
2.3废烟余热回收利用
发电厂锅炉废烟余热作为二次能源,如果未能得到充分利用,则会造成能源浪费,特别是废烟处于高温状态下进行排放,直接会导致大气污染。在此情况下,为了提高废烟余热的利用率,减少其对环境的污染,应进一步优化热能动力系统,可利用节能器或低压省煤器等,在其合理安装后,可降低废烟温度,从而锅炉的使用效率也将有所提高。通常情况下,在回收废烟余热时,需要借助预热工件,但受场地、成本等因素的影响,使工件难以有效运用,因此,在发电厂发展过程中,应结合自身的实际情况,采取针对性的优化与改造技术。
2.4蒸汽凝结水回收利用
在发电厂生产过程中,蒸汽热力扮演着重要的角色,但实际生产中,蒸汽释放热能后,其凝结水存在严重的浪费现象,此时浪费的蒸汽凝结水占蒸汽总热量的20%~30%,如果对其进行合理的运用,将利于工业用水的节约,同时也利于燃料能源的节省。因此,发電厂应对蒸汽系统进行节能改造,具体措施为借助蒸水余热替代低压蒸汽,此时发挥凝结水的余热,以此减少低压蒸汽的能耗,进而利于达成节能减排的目标。对于凝结水而言,其回收方式主要有两种,一种为加压回收,另一种为背压回收,前者主要是利用气动凝结水加压泵,对凝结水进行加压输送,此方法具有一定的稳定性,后者主要是借助输水阀背压,对水蒸气与凝结水进行输送,此方法保证了回收水及二次水蒸气的有效利用。上述两种方法具有一定的现实意义,不仅节约了能源,还减少了废气与废水排放,从而满足了节能减排的要求,保证了企业综合效益的增长。新时期,发电厂为了实现可持续发展,采取了诸多的节能措施,但成效甚微,造成此情况的原因主要为发电厂仅对单独的装置设备进行节能改造或者优化,而未能关注整个系统的联合改造与优化。而热能动力联产技术最为明显的特点便是整体性与系统化,常见的技术有蒸汽动力联产、燃气轮机联产等,前者主要是由燃气轮机锅炉系统与锅炉汽轮机高压系统构成的,此时的联产利于系统优化,特别是对高能耗企业而言,是降低能源消耗的重要手段;后者主要是对热能动力系统进行优化,保证了较低温度热流的有效加热。
2.5发电厂热能动力系统的热能动力联产技术
众所周知,在社会经济快速发展的背景下,发电厂运行效率增加,资源浪费严重,针对此种情况,相关人员就需要采用热能动力联产技术,对发电厂热能动力系统进行优化节能改造工作,将燃气轮机锅炉系统、锅炉汽轮机高压系统等众多系统进行整合,一同工作,此种情况下,就会降低热能动力系统能源消耗,保证热能动力系统在运行过程中始终处于一个低温热流状态,从而实现节能减排的目的。因此锅炉排污的方式很容使排放污水的余热出现浪费,并对环境造成破坏。对此现状,发电厂利用锅炉过程中为确保污水余热得以回收,可增设排污废热回收器。同时为使扩容条件下的污水得以充分利用也可增设排污冷却器。这样既可保证运行过程中能源利用效率的提高,也使能源节约效果得以增强。
3电厂锅炉应用在热能动力工程中的发展前景
在现代科技背景下,非常有必要引入热力技能,对于热能动力工程进行深度开发和研究,保证其实践应用过程中的科学性和有效性。该项研究的主要任务在于将热能转化为机械能所承载的驱动力。锅炉系统的应用原理是将热量转化为机械能的过程,为发电过程提供动力能源。可以如是形容,熱力工程研究领域对于锅炉设备的生产技术和运行技术所展开的技术研究是锅炉应用技术的主要研究过程,尤其是在社会主义建设开启的发展历程中,市场的发展逐渐壮大,提倡节能环保,使科研项目不断走向完善,以及改进电厂锅炉在热电工程中的技术,使其迎合时代发展的技术要求。
结束语
作为社会进步的主要动力,能源已成为近年来经济发展过程中被关注的重要内容。然而我国目前能源利用过程中仍存在技术上的缺陷以及较差的节能环保意识,导致能源利用效率过低且消耗过大,特别使用锅炉时所造成的资源浪费与环境污染问题都需引起重视。因此,对发电厂热能动力系统进行优化并实现节能改造具有十分重要的意义。
参考文献
[1]刘晓亮.浅谈炼油厂热能动力系统优化与节能改造[J].能源与节能,2017,05:60-61.
[2]葛海霞.烟气热能回收利用装置烟气流动换热优化与应用研究[D].北京建筑工程学院,2015.