引言
风能作为可再生能源,利用风能进行发电不但能够降低对资源的消耗,缓解我国资源紧张问题,而且可大大减少对环境造成的污染,为推动我国能源消费结构也作出了巨大的贡献。风力发电机是进行风能发电的核心设备,主要是将动能转化为机械能,然后再将机械能转换为电能。这一系列的过程需要通过发电机组内部所有元部件的共同配合完成,但是由于风电场一般都位于比较偏远的地区,发电机在运行过程中受环境影响较大,一旦发生故障,将会造成严重的经济损失。
一、 风力发电机采用状态监测和故障诊断技术的必要性
风力发电机状态监测和故障诊断技术主要是利用计算机控制系统,将信号采集、在线监测和信号分析综合运用的系统。状态监测技术主要有油液监测、振动监测、温度监测、应变力监测,利用安装在风力发电机中的检测设备进行信号的收集,然后通过对信号的处理、分析、判断和诊断,就能够及时获取发电机的运行状态,进而通过控制中心对发电机的运行状态进行调整,可有效预防故障的发生。油液监测技术主要是通过对润滑油和液压油的性能进行分析,以此来掌握设备的润滑及磨损状态。振动监测主要是通过振动信号的收集来分析风力发电机的机械故障,比如转子不平衡,转轴弯曲等。温度监测主要是通过温度传感器获取设备的运行温度,常用于电子和电气元件的故障诊断,能够比较直观的反应设备的运行状态。应变力监测主要是通过应变力传感器来获取信息,主要用于叶片寿命的预测和疲劳状况的监测。状态监测和故障诊断技术能够对风力发电机进行远程监控和诊断,通过对各项数据信息的收集整理,能够实时监控风力发电机各个部件的运行状态,可有效遏制安全事故的发生,提高风力发电机运行的稳定性和可靠性。
二、风力发电机组状态监测技术
1.性能参数检查
该方法主要用于监测风力发电机组在运行状态下的实际输出功率,将获取到的实际监测结果与机组正常输出功率进行对比,判断其性能参数是否超出阈值,以此判断风力发电系统有无故障问题。
2.计算参数异常监测
(1)在检测计算参数的过程中选择合适的算法。风力发电机组有多种类型,每种类型的风力发电机组内多处需要用到各类不同算法,而每类算法中又有多种策略可供选择。这要根据风力发电机组实际情况和需求来选择合适的算法,因为不同的算法直接影响最终的计算结果,选取合适的算法能够显著提高计算参数监测的准确性和计算效率。(2)选择合适的设备运行算法。所谓合适的设备是指:①算法稳定、长期运行需要执行设备本身的硬件条件支持;②风力发电机组内需配置可靠、稳定的数据传输设备及测量设备,为算法的运行提供计算依据及输出渠道。
3.振动监测
振动监测作为风力发电机状态监测的必要技术,主要监测分析发电机组中的轴承、齿轮以及机舱部分的振动情况。通过传感器获得这些部分的振动信号,然后通过系统对监测信号与正常信号进行比对分析,若出现异常系统会给出报警信号。一般在振动监测当中采用幅域统计分析的方法进行。振动监测设备和其他监测技术相比,成本要高,在应用振动监测进行监测的时候采用等旋转角采集的方式进行信号采集,为保证信息准确性,分析时采用FFT分析消除干扰获得准确振动信息。
三、状态监测和故障诊断技术在风力发电机中的应用
1.齿轮箱状态监测和故障诊断
齿轮箱作为风力发电机中连接主轴和发电机的重要部件,其内部结构和受力情况比较复杂,尤其是在运行工况和载荷发生变化的情况下,发生故障的几率会有所增加。由于齿轮箱故障而导致风力发电机故障的占比较大,不仅维修成本高,且因为停机所造成的发电量损失巨大,所以对齿轮箱进行状态监测和故障诊断非常重要。齿轮和轴承是齿轮箱比较常见的故障部位,断齿、齿面疲劳、胶合是齿轮常见故障类型,磨损、点蚀、裂纹、表面剥落是轴承常见故障类型,任何一种故障类型都会影响到齿轮箱的正常运转。随着风力发电机规模的扩大,对齿轮箱的性能要求也越来越高,所以要保证齿轮箱的安全可靠运行。振动监测和温度监测在齿轮箱状态监测中比较常用,振动监测主要是利用振动测量仪器对齿轮箱的振动频率进行检测纪录,然后将测得的实际运行数据与设计数据进行对比分析,从而发现齿轮箱中各部件的运行状态。故障特征频率是判断齿轮和轴承健康状态的重要指标,所以通过时域信号统计能够初步诊断出齿轮箱故障点及原因,然后再利用快速傅里叶变换和功率谱对初步诊断的结果进行再次确认。温度测量法主要是通过温度传感器对齿轮箱零部件运行过程中的温度变化进行识别和诊断,通过与常态进行对比,能够及时获知齿轮箱零部件的状态信息。
2.叶片状态监测和故障诊断
叶片在风力发电机中主要是吸收风能,长期处于露天环境下,对叶片造成的损伤较大。叶片长度一般在30~40m,所以在运行过程中出现的颤振会导致叶片出现疲劳裂纹,如果在近海地区还会受到海水湿气的腐蚀,阵风和雷击也是影响叶片运行安全的重要因素。为了保证叶片运行的安全性,对叶片的材料、质量和体积都有严格的要求。一旦叶片发生故障,不仅会造成叶片本身的损坏,还会威胁到整机运行的安全性。对叶片的状态监测和故障诊断主要是通过应力应变测量来实现,但是受到叶片材料以及运行环境的影响,对应力应变传感器有一定的要求。光纤光栅传感器因为具有较好的抗电磁干扰、抗腐蚀、尺寸小、寿命长等优点,比较适用于叶片的应力应变检测,在预测叶片使用寿命中具有重要作用。为了弥补光纤光栅传感器的不足,还可将声发射检测和红外成像检测结合运用。利用声发射检测能够检测出叶片因与空气冲击导致的内部应力集中断裂以及变形时释放的应力波,以此来判断叶片健康状况。红外成像检测技术可对叶片表面裂纹、剥落等呈现的热辐射能量分布状态来识别叶片的健康状态。
3.发电机状态监测和故障诊断
发电机是风力发电机中的核心部件,其主要功能是将机械能转换为电能。由于发电机长期处于工况变化以及电磁环境中,且由于机组规模的扩大对发电机的密封保护增加一定的难度,所以经常会出现振动过大、发电机过热、轴承过热、转子/定子线圈短路等故障,其中轴承故障、定子故障及转子故障占据较大比例。对于发电机的状态监测和故障诊断主要是对转子/定子电流信号、电压信号以及输出功率信号进行状态监测,通过对电流信号的时域分析获取幅值数据信息,然后经过谐波分量的变化来判断发电机故障类型。比如对转子偏心故障的识别中,通过输出电流、电压、功率等信号的获取,能够判断出是轴承过度磨损还是其他故障类型。
结束语
风力发电机的状态会直接影响人们的生活质量,希望未来风力发电机状态监测和故障诊断技术能够得到普及,并且做好各项防范措施,减少发电机发生故障的几率,提高风力发电的效率和质量。
参考文献
[1]赵铁印.双馈式风力发电机组发电机滚动轴承状态监测及故障诊断方法的分析[J].科技风,2018(19):195.
[2]吴艳标.风力发电机状态监测和故障诊断技术的研究[J].城市建设理论研究(电子版),2018(07):1.