基于SVM的海浪要素预测试验研究
金权 华锋 杨永增
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

金权 华锋 杨永增,. 基于SVM的海浪要素预测试验研究[J]. 海洋研究,2019.6. DOI:.
摘要: 采用支持向量机对海浪要素中的有效波高进行预测,采用风场和波浪场作为学习要素,对比不同特征向量对有效波高预测结果的准确度.取台湾岛东部海区作为实验区域,使用NCEP再分析的数值模式数据作为学习样本.选用支持向量分类机,建立了4组不同特征向量的模型进行海浪有效波高的预测,并对4种模型的结果进行比较和分析.实验表明,当输入的特征向量过多或过少时,会对模型的预测结果和计算效率产生不同的影响.当使用风场和波浪场共同作为特征向量进行学习时,在该区域预测结果与模式预报结果相比更接近,相关系数将近99%,均方根误差约0.2 m.
关键词: 支持向量机;海浪要素预测;海浪数值模式
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。