基于注意力机制和深度学习模型的外来海洋生物命名实体识别
贺琳 张雨巴 韩飞
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

贺琳 张雨巴 韩飞,. 基于注意力机制和深度学习模型的外来海洋生物命名实体识别[J]. 中国水产学报,2021.3. DOI:.
摘要: 为解决因外来海洋生物领域实体复杂且实体间存在嵌套导致命名实体识别效果较差等问题,提出基于融合注意力机制的卷积神经网络(CNN)-双向门控循环单元网络(BiGRU)-条件随机场(CRF)网络模型进行外来海洋生物命名实体识别,并构造词向量、词性特征向量等特征作为网络模型的联合输入,以提升网络模型识别效果。结果表明:使用融合多特征向量的CNN-BiGRU-CRF网络模型对外来海洋生物名称实体、时间实体、地名实体3类实体上的命名实体识别结果平均准确率达到了90.62%,平均召回率达到了89.50%,平均F1值达到了90.05%,较传统命名实体识别方法均有较大提高。研究表明,本研究中提出的网络模型可以充分提取文本特征,解决了文本的长距离依赖问题,对外来海洋生物领域的命名实体识别具有较好的识别效果。
关键词: 海洋生物;命名实体识别;卷积神经网络;深度学习
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。