基于BERT+BiLSTM+CRF深度学习模型和多元组合数据增广的渔业标准命名实体识别
杨鹤1 于红1,2 刘巨升1 杨惠宁1 孙哲涛1 程名1 任媛1 张思佳1,2
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

杨鹤1 于红1,2 刘巨升1 杨惠宁1 孙哲涛1 程名1 任媛1 张思佳1,2,. 基于BERT+BiLSTM+CRF深度学习模型和多元组合数据增广的渔业标准命名实体识别[J]. 中国水产学报,2021.5. DOI:.
摘要: 为解决渔业标准命名实体识别任务中部分实体语料分布稀疏导致的效果不佳问题,提出了基于多元组合数据增广(data augmentation method based on multiple combination, MCA)的渔业标准命名实体识别方法,该方法融合了基于领域词典的联合替换算法(joint replacement algorithm based on domain dictionary, DDR)、基于槽点保护的随机删除算法(random deletion algorithm based on slot protection, SPD)和基于槽点保护的随机插入算法(random insertion algorithm based on slot protection, SPI)进行语料库的数据增广,首先构建"水产品名称"同类词词典和领域同义词词典,通过两个词典分别对"水产品名称"类实体和随机词进行同类词替换和同义词替换,生成新的句子,以增加目标实体数量和句子的多样性,然后在基于槽点保护的情况下对原句子分别进行随机删除和随机插入操作,在保留实体及上下文特征的情况下进一步丰富语料的多样性,提高模型的泛化能力。结果表明,采用基于融合注意力机制的BERT+BiLSTM+CRF网络模型和多元组合数据增广方法进行渔业标准命名实体识别,准确率、召回率、F1值分别达到了91.73%、88.64%、90.16%,具有较好的效果。研究表明,基于多元组合数据增广的渔业标准命名实体识别方法有效解决了部分实体样本稀疏问题,提升了渔业标准命名实体识别的整体效果。
关键词: 深度学习;实体识别;数据增广;BERT;双向长短时记忆网络;渔业标准
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。