基于深度学习YOLOV5网络模型的金枪鱼延绳钓电子监控系统目标检测应用
王书献1,2 张胜茂2 朱文斌3 孙永文1,2 杨昱皞1,2 隋江华1 沈烈1 沈介然4
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

王书献1,2 张胜茂2 朱文斌3 孙永文1,2 杨昱皞1,2 隋江华1 沈烈1 沈介然4,. 基于深度学习YOLOV5网络模型的金枪鱼延绳钓电子监控系统目标检测应用[J]. 中国水产学报,2021.6. DOI:.
摘要: 为评估金枪鱼延绳钓系统运行质量、降低人工成本,以及从金枪鱼延绳钓系统电子监控EMS系统中提取浮球、金枪鱼数量等信息,本文提出一种基于深度学习YOLOV5网络模型的金枪鱼延绳钓电子监控系统浮球及金枪鱼目标检测方法,从HNY722远洋渔船EMS系统视频监控数据中截取包含有目标浮球和金枪鱼的15 578帧关键帧,将所有关键帧及其标记文件划分为14 178个训练数据及1 400个验证数据,基于YOLOV5s、YOLOV5l、YOLOV5m、YOLOV5x等4种YOLOV5神经网络模型,设计分组训练试验对比训练效果。结果表明:参与训练的4种神经网络模型均可完成金枪鱼延绳钓电子监控系统的目标检测任务,但网络模型的选择对广义交并比损失(GIoU loss)、目标检测损失(objectness loss)、准确率(precision)、召回率(recall)、多类别平均精度值(mAP)等参数具有显著性影响(P<0.05),对目标分类损失(classification loss)参数无显著性影响(P>0.05);检测效果表现较好的模型是YOLOV5l和YOLOV5m,二者的mAP@0.5值分别为99.1%和99.2%,召回率分别为98.4%和98.3%,但YOLOV5m网络模型在GIoU损失等表现上劣于YOLOV5l。研究表明,4种网络模型中YOLOV5l模型是最适合应用于金枪鱼延绳钓电子监控系统目标检测的网络模型。
关键词: 金枪鱼;延绳钓;YOLOV5神经网络;视频信息提取
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。