基于CycleGAN超分辨重构的水下图像增强算法
邱皖1 李然1 郑睿谦2
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

邱皖1 李然1 郑睿谦2,. 基于CycleGAN超分辨重构的水下图像增强算法[J]. 中国水产学报,2023.1. DOI:.
摘要: 为了提高水下图像的清晰度和对比度,恢复水下图像颜色特性,提出了一种基于非监督超分辨重构的方法(SR-CycleGAN)对水下图像进行增强。该方法采用超分辨网络和退化网络学习水下图像和陆地图像之间的跨域映射函数,使用相对平均判别器,增加了内容损失函数,并将SR-CycleGAN模型与4种传统的水下图像增强模型和5种基于深度学习的模型,在同一数据集上进行增强效果比较。结果表明:本文中构建的SR-CycleGAN模型得到了最高的PSNR值(20.277)和SSIM值(0.727),与SESS-CycleGAN模型相比,PSNR和SSIM值分别提高了5.9%、13.9%,与FEATURE FUSION-CycleGAN模型相比分别提高了13.8%、71.8%,与BM-CycleGAN模型相比分别提高了5.1%、1.1%;对7类海洋生物进行识别,经过SR-CycleGAN模型增强后图像的识别准确率提高了48%。研究表明,本文中提出的SR-CycleGAN模型在校正水下图像颜色失真的同时还增强了图像清晰度,在海洋生物水下图像识别中具有一定的实用性。
关键词: 水下图像增强;生成对抗网络;超分辨重构;非监督
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。