基于振动模态参数识别的脑电信号特征提取
杨怀花 叶庆卫
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

杨怀花 叶庆卫,. 基于振动模态参数识别的脑电信号特征提取[J]. 天线研究,2021.4. DOI:.
摘要:
对运动想象脑电信号的动力学模型进行了分析,将其分成两个阶段(强非线性的瞬态阶段和弱非线性的自由响应阶段),并构建了一种新的特征提取算法。首先通过起始点扫描的方式对脑电信号进行分割来获得自由响应阶段的脑电信号;然后针对自由响应阶段产生的脑电信号,引入振动多模态参数识别ITD(Ibrahim Time Domain)算法来提取特征组合成特征向量;最后利用Adaboost分类器进行自适应特征选择和分类。运用此方法对国际标准数据库The largest SCP data of Motor-Imagery中的CLA运动想象数据集进行特征提取和特征选择与分类,其平均分类准确率高达90%以上。与现有的特征提取算法相比,获得了更好的分类性能和稳定性。
关键词: 运动想象脑电信号;动力学模型;ITD模态参数识别;Adaboost算法
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。