基于时空特征的无线网络流量预测方法
袁浙科
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

袁浙科,. 基于时空特征的无线网络流量预测方法[J]. 天线研究,2022.4. DOI:.
摘要: 无线网络流量分布具有空间上和时间上的特征,针对传统预测方法对流量分布空间特征的利用不足问题,提出三维卷积神经网络(3D-CNN)和长短期记忆网络(LSTM)相结合的无线网络流量预测模型。首先通过3D-CNN挖掘流量数据的局部时空关联性,并利用空间注意力机制完善全局空间关联的提取;然后使用LSTM模型对抽象时空特征进行训练,并加入了注意力机制缓解循环神经网络的遗忘现象带来的信息损耗。运用此方法对"意大利电信大数据挑战赛"的公开数据集进行训练,其均方根误差(RMSE)和平均绝对误差(MAE)分别降至5.17和3.32,明显优于其他对比预测模型。
关键词: 无线网络;流量预测;时空特征挖掘;3D-CNN;LSTM
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。