基于LVQ工况识别的PHEV控制策略研究
尹安东1,2 姜涛1
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

尹安东1,2 姜涛1,. 基于LVQ工况识别的PHEV控制策略研究[J]. 动力技术研究,2018.5. DOI:.
摘要:
为提高插电式混合动力汽车的燃油经济性,根据城市循环工况的特点选定了4种典型的城市工况,采用学习向量量化(LVQ)神经网络识别车辆运行实时工况,并在MATLAB/Simulink平台制定了一种基于工况识别的整车控制策略.基于实例车型,在Cruise软件中建立了整车仿真模型,并在城市工况下进行仿真.仿真结果表明:所建立的控制策略能够有效识别工况信息;能够以此进行相应工作模式的切换和合理的转矩分配,且相对于传统汽车燃油经济性有明显的提高.从而验证了该控制策略的合理性和有效性.
关键词: 插电式混合动力汽车;学习向量量化神经网络;工况识别;控制策略;燃油经济性
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。