基于LVQ工况识别的PHEV控制策略研究
尹安东1,2 姜涛1
1.合肥工业大学汽车与交通工程学院;2.汽车技术与装备国家地方联合工程研究中心

复制成功

摘要: 为提高插电式混合动力汽车的燃油经济性,根据城市循环工况的特点选定了4种典型的城市工况,采用学习向量量化(LVQ)神经网络识别车辆运行实时工况,并在MATLAB/Simulink平台制定了一种基于工况识别的整车控制策略.基于实例车型,在Cruise软件中建立了整车仿真模型,并在城市工况下进行仿真.仿真结果表明:所建立的控制策略能够有效识别工况信息;能够以此进行相应工作模式的切换和合理的转矩分配,且相对于传统汽车燃油经济性有明显的提高.从而验证了该控制策略的合理性和有效性.
关键词: 插电式混合动力汽车学习向量量化神经网络工况识别控制策略燃油经济性
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。



提示文字!

注:我们将于1~7个工作日告知您审稿结果,请耐心等待;

您也可以在官网首页点击“查看投稿进度”输入文章题目,查询稿件实时进程。

为你推荐

版权所有 © 2025 世纪中文出版社  京ICP备2024086036号-2