摘要:
以Dijkstra算法求解移动机器人路径规划(mobile robot path planning,MRPP)问题已得到广泛的应用,但在复杂工况下无法保证求解的正确性和全局最优性.而基于蚁群算法的移动机器人路径规划模型,在一定条件下能可靠地获得全局最优解,但存在求解时间过长的问题.因此,提出一种结合Dijkstra算法和蚁群算法模型两者优势求解MRPP问题的融合优化方法,以实现在短时间内获得全局最优解的目标.首先,应用Dijkstra快速算法在机器人工作环境中粗略寻迹得到最短路径次优解,然后,在次优解路径附近进行工作环境的精确划分;最后,利用蚁群算法在次优解附近精确寻迹,使最终的寻迹结果无限逼近最短路径.仿真结果表明,该融合优化方法既克服了经典蚁群算法求解时间过长的缺点,又能无限逼近全局最优解,寻迹时间较蚁群算法可缩短90%以上.