基于改进的HOG和LBP算法的人脸识别方法研究
姚立平 潘中良
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

姚立平 潘中良,. 基于改进的HOG和LBP算法的人脸识别方法研究[J]. 光电子进展,2020.2. DOI:.
摘要:
人脸识别技术易受光照、表情等因素影响,为充分提取人脸特征信息,提出了融合改进的局部二值模式(LBP)和梯度方向直方图(HOG)方法提取人脸图形纹理、细节特征,利用列方向压缩的2DPCA+PCA算法对人脸的特征空间进行降维处理,使用2DPCA算法降低了特征维度,解决了仅仅使用PCA方法,由于人脸图像特征维度高而造成求解模型复杂的问题,降低了计算规模,提高了运算速度。最后,使用ORL和Yale人脸数据库进行实验。结果表明,基于改进的LBP和HOG融合的特征提取具有一定的互补性,与其它的识别算法相比,该改进的算法识别率有了较大的提高,鲁棒性更强。
关键词: 人脸识别;局部二值模式特征方向梯度直方图特征;二维主成分分析算法;主成分分析算法
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。