针对跨姿态人脸识别的度量学习方法
王奥迪
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

王奥迪,. 针对跨姿态人脸识别的度量学习方法[J]. 计算机研究与应用,2019.9. DOI:.
摘要:
近年来,由于深度学习技术的引入,人脸识别技术取得显著的发展。然而,当前的人脸识别模型在解决跨姿态人脸识别问题上效果仍然不理想。其中导致这一现象的主要原因是,目前用来训练人脸模型的数据集中姿态变化较少或者不均衡。针对跨姿态人脸识别问题,提出一种基于度量学习的方法 CPP Loss。该方法能够有效地利用训练集中有限的姿态变化,在基准模型上进一步提升其在跨姿态条件下的人脸识别准确率。
关键词: 深度学习;人脸识别;跨姿态人脸识别;度量学习;CPP Loss
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。