基于核聚类的嗅觉神经网络对气味模式的识别
诸震宇 王如彬
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

诸震宇 王如彬,. 基于核聚类的嗅觉神经网络对气味模式的识别[J]. 动力技术研究,2020.1. DOI:.
摘要:
嗅觉系统是生物感觉神经系统中非常重要的组成部分.当嗅觉感受器接收到气味刺激时,其将化学信号转换为电信号并传递给嗅球,嗅球对信息进行整合与编码,继而将其传递到大脑嗅皮层,最终产生嗅觉.对于嗅觉神经网络的建模以及嗅觉信息处理的研究有助于理解嗅觉系统是如何有效区分不同种类与浓度的气味.本文在由僧帽细胞、颗粒细胞以及球旁细胞所构成的传统嗅球模型基础上,引入了嗅皮层来构建完整的嗅觉网络模型,并考虑了抑制性突触可塑性在网络接受刺激时的学习作用.其仿真结果表明抑制性突触可塑性可以平衡嗅皮层中兴奋性和抑制性的突触电流,从而使得嗅皮层对于气味刺激表现为特定的发放模式.嗅皮层对于不同种类的气味刺激表现为不同的发放模式,而对于同一种类不同浓度的气味刺激表现为相似的发放模式与不同程度的发放强度.同时提出了基于核方法的层次聚类和模糊聚类算法来实现对不同种类纯气味的识别和对混合气味中各种气味成分的识别.
关键词: 嗅觉系统气味识别突触可塑性核聚类算法
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。